

ECEN 5713 System Theory Spring 1997 Midterm Exam #3

<i>I</i> ,	, promise that I won't seek any help from others. And I won discuss with anyone else.				
	-	signature	date		

Vector Space & Linear Algebra (choose any two, 20%)

<u>Problem 1a</u>) Find a basis for the space X generated by the vectors

[1]	[2]	[3]	[4]
3,	-1 ,	-1 ,	-3.
[_7]		[1]	2
	1 1.	• •	17 0

And what is the dimension of X?

<u>Problem 1b</u>) Is the following set of vectors linear independent

i) in $(\Re(s), \Re)$, and

ii) in
$$(\Re(s), \Re(s))$$
?

$$\left\{\frac{3s^2 - 12}{2s^3 + 4s - 1}, \frac{4s^5 + s^3 - 2s - 1}{1}, \frac{1}{s^2 + s - 1}\right\}$$

<u>Problem 1c</u>) Find an orthonormal basis from vectors

	[1]		[2]		[-1]
	1		-1	, <i>u</i> ₃ =	2
$u_1 = $	1 , l	$u_2 = $	-1		2
	1]		1		1

by Gram-Schmidt or modified Gram-Schmidt procedures.

<u>Problem 1d</u>) Consider linear operator

$$A = \begin{bmatrix} 1 & 4 & 7 & 3 \\ 2 & 0 & 2 & 1 \\ 3 & 4 & 9 & 4 \end{bmatrix},$$

Find its rank, nullity, range space and null space.

Eigenvalues & Eigenvectors (20%)

<u>Problem 2a</u>) Find the eigenvalues, eigenvectors and Jordan form for the matrix

	2	-2	3	
<i>A</i> =	1	1	1 .	
	1	3	-1	

<u>Problem 2b</u>) A 6×6 matrix A has characteristic polynomial $\Delta(\lambda) = (\lambda - 1)^4 (\lambda - 2)^2 = 0$. One possible Jordan-form representation is

Please determine its structure (i.e., rank and nullity of $(A - \lambda_i I)^k$).

Fundamental Matrix & State Transition Matrix (20%)

Problem 3a) Find the fundamental matrix of the homogeneous equation

$\begin{bmatrix} \dot{x}_1 \end{bmatrix}$		t	0	0	$\begin{bmatrix} x_1 \end{bmatrix}$	
\dot{x}_2	=	$\begin{bmatrix} t \\ 1 \\ e^{-t} \end{bmatrix}$	t	0	$\begin{bmatrix} x_2 \\ x_3 \end{bmatrix}$	
\dot{x}_3		e^{-t}	0	1	$\lfloor x_3 \rfloor$	

<u>Problem 3b</u>) Show directly from the Peano-Baker series that if A(t) = A then

 $\Phi(t,t_0) = \exp A(t-t_0).$

Solution of Dynamic System (20%)

<u>Problem 4a</u>) Given $\dot{x} = t^2 A x$ where A is an $n \times n$ real matrix, determine x(t) in terms of A and $x(t_0)$.

<u>Problem 4b)</u> Consider x(k+1) = A(k)x(k). Define $\Phi(k,m) = A(k-1)A(k-2)\cdots A(m)$, for k > m $\Phi(m,m) = I$.

Show that, given the initial state $x(m) = x_0$, the state at iteration k is given by $x(k) = \Phi(k,m)x_0$. If A is independent of k, what is $\Phi(k,m)$?

Function of At (20%)

Problem 5a) If
$$A = \begin{bmatrix} \sigma & \omega \\ -\omega & \sigma \end{bmatrix}$$
, show that
 $e^{At} = \begin{bmatrix} e^{\sigma t} \cos \omega t & e^{\sigma t} \sin \omega t \\ -e^{\sigma t} \sin \omega t & e^{\sigma t} \cos \omega t \end{bmatrix}$.

Problem 5b Given
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$$
, find A^{101} , e^{At} and $\sin(At)$.

HOW LONG YOU HAVE SPENT ON THIS EXAM ?